Quantcast

Cells and Model Organisms

10 Tips on Mating Mice Successfully

Tiny, furry, spinning around a wheel – few creatures are as endearing as the lab mouse. Trying to obtain reproductive success with them, however, can leave you spinning your own wheels. Why is it that what works so well for the animal facility staff, or experienced technician, seems to be beyond your reach? After all,…

Read More

3 Ways to Use Flow Cytometry for Your Activation Experiment

Studying immune cell activation allows scientists to understand the way the body mounts a response to a specific infection, autoimmune diseases, or cancer. This knowledge plays a direct role in developing more efficacious vaccines and therapies. When tasked with capturing information on immune cell activation, flow cytometry remains the gold standard due to its versatility,…

Read More

The Rites of Passage: Subculturing Microorganisms

Anyone who has worked with microorganisms, be it bacteria or yeast, is familiar with subculturing – the act of transferring some cells from a previous culture to a fresh growth medium. You do it either to reset the growth phase of your culture or to increase the biomass for downstream experiments. But there’s more to…

Read More

The art of generating single cell clones

Making mutations in mammalian cell lines is becoming much easier, especially with advanced molecular engineering techniques such as CRISPR/Cas9, among others. However, after making a mutation, do you know if all of the cells contain the same mutation with the same expression profiles, and are therefore homogenous? If you have 100% transfection efficiency using a…

Read More

Breaking the Wall: How to Make Protoplasts

Non-mammalian cells, including bacteria, fungi, and plant cells, have a cell wall that maintains the shape of the cell. These cell walls are particularly strong, due to their composition as they contain polymers that create a rigid sphere around the vulnerable cytoplasm contained inside the plasma membrane. In bacteria, the cell wall includes several layers…

Read More

“Viable But Non-Culturable (VBNC)”: Zombies of the Bacterial World

Imagine that you want to test the efficiency of an antimicrobial treatment in inhibiting a certain bacterial pathogen. As part of the experiment, you expose the bacteria to the treatment and monitor the cultivability of the microorganism by counting the number of colony forming units (CFU) formed on culture media. If the microorganism is sensitive…

Read More

The Correct Way To Quantify Cellular Autophagy

Just like you need to clean up your room from time to time, your cells also need to do a bit of housekeeping.  Your cells accomplish this through a process called autophagy.  Autophagy mainly serves two roles.  The first is to remove damaging materials, such as misfolded proteins, dysfunctional organelles, and foreign invaders.  The second…

Read More

How to Grow Corn in a Greenhouse

Because of the ease of performing controlled crosses, maize (or corn (Zea mays)), has been a staple of plant genetics research for decades. Barbara McClintock herself chose maize as her research organism for her Nobel Prize winning work. If you are looking to get involved but aren’t sure how to get good yields in the…

Read More

4 Important Considerations for Your Cell Lysis

You’ve cultured your cells and completed your treatments, now it’s time to harvest them and proceed to the downstream effects. Cell lysis is the crucial stage that determines if your experiment has a chance of producing the data that you have been waiting for. Part of the starting biological material is inevitably lost on each…

Read More

Epidemiology: The Underdog of Disease Studies

As bench scientists, we deal primarily with the tangible aspects of biology. The mechanisms and pathways that we try to understand not only allow for us to delve more into how the world works, but can also shed light on disease. However, there is a subject that while distant from traditional bench work, is equally…

Read More

An Introduction to Fertilizers in Plant Research

If you have ever had a home garden, you are probably familiar with the fact that adding a little fertilizer to a plant can really do wonders. This can also be the case in a lab greenhouse! The difference is that instead of adding a bit of the “blue stuff,” we try to be a…

Read More

Kidney Organoids in a Dish

Kidney Modeling with Kidney Organoids Derived from Human Pluripotent Stem Cells Stem cells are a valuable tool for kidney disease modeling as well as experimental regenerative medicine and drug screening. There are more than twenty different cell types in the mature kidney, which adds to the complexity of the model, but also provides the opportunity…

Read More

Meet Nature’s Oldest Doomsday Preppers: Endospores

My favorite reason for being a biologist is that I am endlessly amazed by how life adapts to various pressures on planet Earth. This especially holds true for endospores, one of nature’s most resilient means of surviving for thousands of years in non-ideal environmental conditions. In this article, we’ll explore some of the extreme environments…

Read More

A Beginner’s Guide to Exosome Isolation

For all of you who have never heard of exosomes: You are missing out on a whole new paradigm in cell-to-cell communication. Exosomes are tiny extracellular vesicles that arise from fusion of the plasma membrane with specific endosomal compartments called multivesicular bodies. Most cells types make exosomes, and release them in order to communicate with…

Read More