Quantcast

Flow Cytometry

Five Things That Irritate Flow Cytometrists

I have worked in flow cytometry for a number of years. I’m still annoyed that many myths and imprecisions are perpetrated and perpetuated. Here is my non-exhaustive list of cytometry-related beliefs that send flow cytometrists screaming from the room or at least, being English, make me tut sadly. Forward Scatter Equals Cell Size No No…

Read More

Post-sorting Checks and Measures

In my previous article I discussed steps you can implement to ensure that a sample is ready for cell sorting. But now it’s time to make sure the sort worked. Here are a few sorting checks and measures to ensure that all’s well that ends well. Post-sorting Checks and Measures Re-evaluate Your Catch Tubes Sorting…

Read More

Guidelines for Efficient Cell Sorting – Part 1

Flow cytometry is a pervasive tool to characterize just about anything in cell biology. From quantifying the expression of surface antigens, to determining the physiological changes in cells and everything in between, flow cytometry is as indispensable to a cell biologist as a knife is to a surgeon. Cell sorting is pivotal in enabling researchers…

Read More

Sheath Pressure: Nozzle Size Does Matter

Hello again, fellow Flow Cytometry Fan! It looks like you have your experiment all planned out, including staining protocols and gating schemes, and are ready to get some paradigm-shifting data. But before we start “plugging-and-chugging” samples through your cytometer of choice, we need to make sure that the nozzle size and sheath pressure are set…

Read More

The 3 Most Common Flow Cytometry Fallacies

Flow cytometry is fast evolving from a method only revered by immunologists, to one used by nearly every biological specialty. It’s pretty much my favorite tool. Unfortunately, as with most lab techniques, much of flow cytometry is taught on the job without a lot of standards. And too often bad habits are passed along like…

Read More

Chromosome Analysis by Flow Cytometry

In most people’s minds a flow cytometer can sort, view and count cells e.g. lymphocytes, thymocytes, cultured cells and even non-mammalian cells such as yeast or bacteria. However, in reality, a flow cytometer is capable of providing information about any particle as long as it has detectable fluorescence. This fluorescence may occur either inherently or…

Read More

Are Quantum Dots Any Good for Flow Cytometry?

What Are Quantum Dots? Quantum dots were discovered in the early 1980s. However, it was not until the late 1990s that their use in biological applications was suggested.1 Quantum dots are semiconducting nanocrystals made of artificial atom clusters. Their size generally ranges from 2 to 20 nm. Size is crucial for their physical properties because…

Read More

How to perform cell synchronization in specific cell cycle phases

The cell cycle has been very well documented over the years because of its dysregulation in diseases such as cancer. Many different processes contribute to cell growth and replication, which is ultimately controlled by a series of tightly controlled cell cycle phases. For some areas of research, especially within drug discovery and cancer research, cell synchronization in…

Read More

Hierarchical or Boolean Gating: Which One to Choose?

A flow cytometer collects the events you are interested in, and also ‘sees’ every event that goes through. This includes debris and even bits in your buffers. As cytometrists, we gate our cells to exclude unwanted bits and to focus on the sub-populations that we are interested in studying. There are two main ways of gating…

Read More

How Fluorescent Molecules Work: Shine Bright like a Diamond

Fluorescence is one of the most important and useful tools in a biologist’s toolbox. In biology, nearly every field, from physiology to immunology, uses fluorescent molecules (aka fluorophores) to detect proteins. However, the specific science behind how fluorescence works can be confusing or overlooked. Have no fear! In this article, we break down key points of…

Read More

Hydrodynamic Focusing in Flow Cytometry

If you have sorted samples or phenotyped cells by surface expression of proteins, you’ve probably wondered how each cell is sorted or phenotyped in a flow cytometer? This question seems trivial, but in reality it took a while for engineers to figure it out. Before I get into today’s topic on “hydrodynamic focusing,” I’ll walk…

Read More

Multiplex Cytometric Bead Array: The ABCs of CBAs

Multi-parameter data acquisition is key to the modern era of science research. I, for one, wish every single experiment that I design would give me the maximum amount of information. For example, in cell biology and immunology, we want to capture as much information (be it cytokines/hormones/chemokines) as possible about a given cell population. Of…

Read More

Corralling Your Cells: How to Gate in Flow Cytometry

Flow cytometry. Some people love it—most hate it—but all can agree that it is one of the most powerful analytical tools immunologists possess. Here’s a quick refresher: as the name suggests, flow cytometry measures the physical and chemical characteristics of cells. This is accomplished by fluorescently labeling cell surface markers/proteins using antibodies conjugated to fluorophores.…

Read More

Lighting the Way: Understanding Flow Cytometry Fluorophores

As science is becoming more interdisciplinary, the tools we use to answer questions are also crossing party lines. Case in point: flow cytometry. Once a tool only used by “real” immunologists, flow cytometry is fast becoming a method by which numerous questions can be answered, from the length of a cell’s telomeres, to the state…

Read More

Analyzing Cell Signaling with Flow Cytometry: Go with the Flow

Phosphorylation Equals Cell Signaling! How do cells communicate and respond to their environmental cues? This question has been on the hot list for scientists ever since the discovery of the cell. Cells use signaling cascades based on biochemical reactions to deliver or receive messages. How cool is that? The major secret of cell signaling was…

Read More