Alex Chen

Alex Chen
Alex has a PhD in Virology and Immunology from the University of Massachusetts Medical School. Research fellow with a working knowledge of molecular and cellular immunology seeking opportunities in the medical-related field. Interested in the areas of vaccine and drug development. Extensive research experience using flow-cytometry, cell culture, murine animal models, and biomedical approaches. Sound knowledge in a variety of computer-related tasks. Excellent oral and written communication skills and objective-oriented.

Articles by Alex Chen

Show Your Molecular TALEN(T)

Show Your Molecular TALEN(T)

Introduction Did you know that the idea of using genetic engineering to ameliorate certain human diseases was viewed as ‘science fiction’ only 10 short years ago? While cell mutagenesis studies and genetic knockout experiments were feasible before genetic engineering, they were not very reliable. Indeed, due to the random and imprecise nature of these older…

The EMSA – Teaching an Old Dog New Tricks

The EMSA – Teaching an Old Dog New Tricks

Probing Nucleic Acid-Protein Interactions with EMSA The electrophoretic mobility shift assay (EMSA) is a powerful technique for detecting specific-binding of nucleic acid-protein complexes. Over the past 30 years, EMSA has been the “go to assay” to investigate the qualitative interactions between nucleic acids (DNA or RNA) and nucleic-acid binding proteins. Through the use of radio-labeled…

Using Synthetic DNA For Long Term Data Storage

The amount of data requiring long-term storage is growing and accelerating. Current long-term digital storage technology cannot keep up. Imagine roughly 2.5 QUINTILLION bytes of data being created everyday in this world1–2 as more computers and network infrastructure come online. For average users, a long-term storage solution is probably not an issue. However, organizations and…

A Primer on Checking the Methylation State of the Genome

A Primer on Checking the Methylation State of the Genome

We all know that genes encode proteins that make up a living cell. However, the level and coordination of gene expression is really the key to the success of a living cell. One way eukaryotic cells (that’s us!) control protein expression is through addition of a methyl or hydroxymethyl group on the cytosine nucleotide. This…

Small Particles (Things) Matter!- Introducing Nanoparticle PCR

Small Particles (Things) Matter!- Introducing Nanoparticle PCR

There are many different methods and protocols on making your PCR  run more efficiently. I recently came across an interesting PCR method called “nanoparticle” PCR. This method seems to attract a lot of attention, because it enhances a PCR  by a few orders of magnitude. More interestingly, while the enhancement effect has been reported in a…

A New Frontier in Protein Quantitation: AlphaLISA

A New Frontier in Protein Quantitation: AlphaLISA

If you ever worked in a biology or biochemistry laboratory, you probably already heard about ELISA. You may have even used it. But do you know what’s behind it? And how you can improve it? Let me guide you through the basics of ELISA, and introduce you to my favorite ELISA technique—AlphaLISA. First Things First… So,…

Multiplex Cytometric Bead Array:  The ABCs of CBAs

Multiplex Cytometric Bead Array: The ABCs of CBAs

Multi-parameter data acquisition is key to the modern era of science research. I, for one, wish every single experiment that I design would give me the maximum amount of information. For example, in cell biology and immunology, we want to capture as much information (be it cytokines/hormones/chemokines) as possible about a given cell population. Of…

Analyzing Cell Signaling with Flow Cytometry: Go with the Flow

Analyzing Cell Signaling with Flow Cytometry: Go with the Flow

Phosphorylation Equals Cell Signaling! How do cells communicate and respond to their environmental cues? This question has been on the hot list for scientists ever since the discovery of the cell. Cells use signaling cascades based on biochemical reactions to deliver or receive messages. How cool is that? The major secret of cell signaling was…

Choosing the Right E. coli Strain for Transformation

Choosing the Right E. coli Strain for Transformation

Cloning, purifying, and expressing modified genetic material is routinely done in microbes such as Escherichia coli (E.coli). Relatives of this molecular biology workhorse normally live in the intestinal track of humans. The particular E. coli strain (K-12) that scientists use all over the world was isolated from the feces of a diphtheria patient in 1922.1…

Top 5 Tricks for Using FlowJo

Top 5 Tricks for Using FlowJo

Are you planning to do cellular immunology research?  Then chances are you will be introduced to the flow cytometer –  “a modern immunologist’s best friend.” This modern magic box is a highly versatile machine packed with cutting-edge fluidics and photonics (lasers). Combined with the monoclonal antibodies conjugated to fluorochromes capable of emitting light signals from a…

A Guide to Solid Phase Reversible Immobilization

A Guide to Solid Phase Reversible Immobilization

  Scientists today depend heavily on many molecular biology techniques to perform their research. For example, with the advent of next generation sequencing (NGS): scientists are able to look at very minute details, right down to individual genetic sequence variations. However, the increase in experimental complexity means that every extra step becomes more crucial than…

Nanopore Sequencing

Nanopore Sequencing

A disruptive sequencing technology Every new generation, a new concept is born and can completely reshape the landscape of biomedical research. Nanopore sequencing technology, although still at its infancy, is beginning to look like a “game-changer.” It’s a revolutionary concept in sequencing in which strands of nucleic acids are fed through a tiny pore (nanopore)…

Locating Your Cellular Apoptosis Squad: Annexin V Staining Assays

Locating Your Cellular Apoptosis Squad: Annexin V Staining Assays

In real life, cells are instructed to commit suicide for the greater good of the organism. The programmed cell death (apoptosis) is important during development of a multi-cellular organism. A good example you will appreciate is the dis-appreance of the tail from a tadpole as it turns into a frog. On the reverse, the lack…

Long-Range PCR:  It’s About Choosing the Right Enzyme

Long-Range PCR: It’s About Choosing the Right Enzyme

The ability for DNA polymerase to copy a long stretch of DNA is becoming increasingly important. Why? It has to do with the advances in our sequencing technologies. Our next generation sequencing (NGS) technology requires the DNA polymerase to copy a long stretch of DNA (sometimes up to 50kb) as NGS is churning out genetic…

Photonic PCR: When Lightening Strikes Your DNA

Photonic PCR: When Lightening Strikes Your DNA

Before I get into today’s topic, please allow me to digress a bit and start with a few sentences that sum up the polymerase chain reaction (PCR); the grand-daddy of molecular biology. PCR, a method that is at the heart of modern day molecular biology discoveries, is a process that amplifies genetic material through our…

Single Molecule Real-Time Sequencing

Single Molecule Real-Time Sequencing

Recently, I have witnessed the uprising of various next generation sequencing (NGS) platforms and it’s quite interesting because each platform uses a different method. Previously, I’ve written about the exciting possibility of nanopore sequencing—a new sequencing technology based on the “signature” electrical currents generated as a single strand of DNA passes through the nanopore. The…