WGS Workflow: From Sample Collection to Data Interpretation
|

WGS Workflow: From Sample Collection to Data Interpretation

The efficiency of whole genome sequencing (WGS) workflows has skyrocketed since its inception. Major leaps and minor tweaks in the WGS workflow have compounded over time resulting in radical reductions in processing time and the cost of sequencing whole genomes over the past decades. The complete sequencing of the first human genome, named the Human…

Culturing M1 and M2 Macrophages: Media Matters
|

Culturing M1 and M2 Macrophages: Media Matters

Macrophages are a type of white blood cell derived from monocytes that are most widely known for the ability to phagocytose cell debris, pathogens, and even cancer cells. However, it is becoming clear that the role of macrophages goes beyond eliminating cellular waste. Macrophages are often used in conjunction with T cells to measure immune…

The Recipe for Successful Whole Genome Sequencing
|

The Recipe for Successful Whole Genome Sequencing

The success of whole genome sequencing (WGS) is shown in the quick and efficient scientific response to the 2011 outbreak of E. coli in Germany and France.1 German and French strains of E. coli were indistinguishable using standard tests.  However, WGS analysis showed 2 single nucleotide polymorphisms (SNPs) in the German strains and 9 SNPs…

CRISPR Multiplexing Strategies: What’s The Choice?

CRISPR Multiplexing Strategies: What’s The Choice?

Although multiplex CRISPR gene editing can be accomplished by simply introducing more than one gRNA to your target cells, there are many alternative — and more efficient — ways of achieving this goal. This article discusses these alternative CRISPR multiplexing strategies and highlights their potential caveats. Not sure whether multiplex CRISPR gene editing is right…

6 Steps for Successful in vitro Drug Treatment

6 Steps for Successful in vitro Drug Treatment

You might have seen one of the many anti-drug ads the 80s had to offer (including this delightful message from Robocop) and rightfully steered clear of drugs. But when it comes to biology, we use in vitro drug treatment for many experimental purposes, including testing anti-cancer treatments or synchronizing the cell cycle. If you are facing your first in vitro…

Nodulation: What Is It and Why Is It Important?

Nodulation: What Is It and Why Is It Important?

Plants are incredibly organisms. Not only do they provide atmospheric oxygen, but, in the case of legumes, they can transform atmospheric nitrogen gas to ammonia, which can then be consumed by humans. How does this happen, you ask? It’s all thanks to bacteria and the process of nodulation. Deep Breaths Nitrogen is an incredibly important…

How to Share Your Lab Protocols and Why It Benefits You

How to Share Your Lab Protocols and Why It Benefits You

Reproducibility is a cornerstone of scientific research and your results need to be reproducible not only by yourself but also by others, both in and outside of your laboratory.  This reproducibility is key for validation of your results as well as to further expand on the knowledge gained during the experiment. In order to accurately…

Successful Start: Tips for Establishing Organoids

Successful Start: Tips for Establishing Organoids

Organoids are a developing star of research. They can be grown to represent the majority of mammalian organs and have a wide range of possible applications. More realistic than simple monolayer cell culture, they offer an in-between step that reduces the need for animal models and simplifies (although doesn’t completely remove) ethics paperwork. They are…

dry vs wet

Should You Switch from Wet to Dried Blood Samples?

A Spot of History Most of the biomedical methods used started as a curiosity. Then the one-off gains a limited use, the technology then progresses until its use becomes widespread. Just think about the arch from the curious polished glass spheres, used by Antony Levnhook to look at animalcules, to modern microscopes. The same story…

Icky Sticky: Heat Shock Protein Contamination during Protein Purification

Icky Sticky: Heat Shock Protein Contamination during Protein Purification

Purifying a new protein is no easy feat. Finding combinations of protein purification buffer, salt, detergent, and stabilizing agent to get high yields of squeaky-clean protein can become tedious. Few things are as bothersome during this process as Heat Shock Protein (HSP) contamination. But worry not, we’ve got some handy tips to avoid HSP contamination…

DNA size selection for NGS libraries
|

DNA Extraction for Next Gen Sequencing

The advent of Next Gen Sequencing (NGS) has been truly amazing. One of the marvels that is often overlooked is how advances in DNA extraction technology have helped streamline NGS workflows. The original standard – phenol/chloroform extraction – is not well suited to the automated nature of today’s sequencing workflows (though with the emergence of…

Faster Ligations: PEGing down the Secret

Overnight ligations are inconvenient — especially when they fail. Luckily, there’s a straightforward way to faster DNA ligations. This article highlights the secret ingredient to faster ligation reactions and offers some tips and caveats on its use. For a general overview of DNA ligations, see here and here. Buy a Quick Ligation Kit The most…

Spinning Around: Tips and Tricks for Using Centrifugal Filters

Spinning Around: Tips and Tricks for Using Centrifugal Filters

One of the most widespread protein laboratory accessories are the MWCO (molecular weight cut-off) centrifugal filters which are commonly used for concentrating protein, as well as DNA. They are available commercially with different cut-offs including 3kDa, 30kDa, 50kDa, 100kDa, and so on. These little devices are expensive and hence demand proper usage and care to…

Staying Alive: Tips for Air-Liquid Interface Cultures

Staying Alive: Tips for Air-Liquid Interface Cultures

What Is Air-Liquid Interface Culture? Long gone are the days where scientists had to rely on 2D cultures of immortalized cell lines to learn principles of human biology. Today, we have a variety of cell culture systems that come closer than ever before to mimicking the structure and function of our body’s organs. One example…

mentoring

Successful Students: Mentoring Students in the Lab

I have been teaching scientific laboratory courses for years. While I was an undergraduate student, I worked as a laboratory teaching assistant for Organismal Biology and volunteered for “Super Science Saturday’s” to educate youth through science demonstrations. I gradually moved on to universities that allowed me to independently instruct students in Anatomy and Neuroscience. Today,…

Getting Sensitive: Diagnostic Sensitivity and Specificity Simplified

Getting Sensitive: Diagnostic Sensitivity and Specificity Simplified

What Do We Mean by Diagnostic Sensitivity? In clinical diagnostics, questions about the sensitivity of an assay will inevitably surface. But what does “sensitivity” mean exactly? The lowest quantity of the given analyte that an assay can detect is often called sensitivity – and to be clear, this quantity is the analytical sensitivity or Limit…