Get Your Microscopy Mojo Back with Our Image Acquisition and Processing Tips

Get Your Microscopy Mojo Back with Our Image Acquisition and Processing Tips

Ever since the invention of the first compound microscope by Zacharias Jansen in 1590, our understanding of the microscopic world has grown exponentially. Microscopes have evolved from mere assemblies of magnifying lenses to extremely powerful tools for visualization on the atomic scale. You can find a wealth of information on the workings of a microscope…

Things to Consider When Buying a Microscope Camera (Part 2)

Things to Consider When Buying a Microscope Camera (Part 2)

In the first part of this series, we discussed the differences between a color and a monochrome microscope camera and when one is advantageous over the other. We also touched on the subject of optimal camera resolution for a given imaging system. In this part, we will tackle a few additional camera specifications and how…

Things to Consider When Buying a Microscope Camera (Part 1)

Things to Consider When Buying a Microscope Camera (Part 1)

Purchasing a microscope camera is one of the most daunting tasks you might have to undertake. Before you set out to buy that camera, carefully consider your applications. Things like sample brightness or the speed of the phenomenon you are trying to capture can dictate your choices. Also, this is the time to make peace…

semiquantitative scoring

Analyze Immunostained Slides with Semiquantitative Scoring

A  routine task in the lab is to investigate the presence of your favorite protein in a range of histological samples. No doubt, staining your tissue sections using good old immunohistochemistry (IHC) would be your first choice. You just got to love a technique that has celebrated its 70th birthday, and is still used in…

Tips for Peering into the Interior of Mice Using Intravital Microscopy

Techniques to study entire tissues, such as brain imaging microscopy, provide great insight into the biology of the whole tissue, rather than just individual cells.  Taking this one step further is intravital microscopy (IVM); a newer approach for the imaging of living tissues and organs in live animals. A wide variety of organs can be…

The Art and Science of Figure Creation:  Think BIG to see Small

The Art and Science of Figure Creation: Think BIG to see Small

There are those of us who began our careers literally in the dark. Yes, there was a time and not that long ago, that all figures had to be on film. Slide presentations were slides. Micrographs were, well, micrographs on film. Figure creation involved several steps: figures for publications had to be mocked up; then…

human clinical samples

Four Tips for Working with Human Clinical Samples

While using human clinical samples in your research can provide robust and heterogeneous results applicable to larger portions of the population, working with these samples presents its own set of challenges. Here are some tricks I have learned to help isolate and grow your cells of interest while eliminating stromal, blood, or other undesired contaminants….

|

Controlling Color Image Quality in Microscopy: Start at the Beginning

The only constant with microscopy imaging is variability in both color and image quality. You only need to look at images in journal articles, posters, around your laboratory, or compare your images with a colleague’s—the evidence is staggering. Interestingly, variability doesn’t generally come from the digital camera, rather it comes from our use of imaging…

A Simple Method for Measuring Intracellular Fluorescence

A Simple Method for Measuring Intracellular Fluorescence

Fortunately for microscopy users, measuring intracellular fluorescence has been made relatively simple through an ImageJ plugin called the Cell Magic Wand. For those of you unfamiliar with ImageJ, it’s a popular image processing program that runs on Mac, Windows, and Linux. How to use ImageJ for measuring intracellular fluorescence First of all, to begin measuring…

DNA from FFPE

The Key to Unlocking DNA from FFPE Tissues

Formalin fixed paraffin embedded (FFPE) tissues are valuable samples that typically come from human specimens collected for examination of the histology of biopsies for the detection of cancer. But each sample contains much more information just waiting to be unlocked. Despite the tiny sample size, DNA can be extracted from the tissue sections and used…

Multifocal Structured Illumination Microscopy

Multifocal Structured Illumination Microscopy: The Fast Food of Super-Resolution Techniques

While most of us have heard of super resolution microscopy, many of you may not have heard of MSIM, or Multifocal Structured Illumination Microscopy. This under-the-radar imaging technique is relatively quick, cheap (by comparison) and will allow you to get a lot of data, fast. So What is MSIM Anyway? MSIM, as I mentioned earlier,…

Go For Gram! Staining Bacteria for Light Microscopy

The Gram stain is another commonly used special stain in the histology lab. Why use a Gram stain? The Gram stain is a type of differential staining technique which represents an important initial step in the characterization and classification of bacteria using a light microscope. It is named after a Danish scientist, Hans Christian Gram,…

How to See the Cell Cycle Through Your Microscope

How to See the Cell Cycle Through Your Microscope

Even in the most basic applications, fluorescence microscopy can be a very powerful technique. Simply put, the ability to actually see the biology you are interested in cannot be matched in directness. Often, the aim of fluorescence microscopy is to observe the effect of an experimental manipulation. Ultimately, you would like to know that the…

Getting Started with Raman Spectroscopy: What You Need to Know

Getting Started with Raman Spectroscopy: What You Need to Know

Are you an assiduous biologist who prefers label-free imaging methods for biological samples analysis? Raman spectroscopy offers you a wonderland of imaging technique with unlimited benefits. To start with, Raman Spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light usually from a laser in the visible or near infra-red part of electromagnetic…

|

Science on Wheels: How to Bring Science to the Masses with a Mobile Lab!

Ask a scientist why they love their job, and they will likely tell you it’s because they get to see and discover amazing things! Why, then, does science class in school never reflect this? A major problem identified in our society is lack of science interest and literacy. Mobile labs are helping to turn the…

|

Let There Be Light! Microscope Maintenance Part 1: Routine Care and Replacing Bulbs

Do you want the best imaging experience each time you use a microscope? Well, this is a rhetorical question, as we all desire that these delicate optical instruments are clean, free from immersion oil and correctly aligned. From the routine checking of slides, capturing images for presentations and publications, to diagnosing diseases using point-of-care microscopes,…