DNA sequence

Studying the Epigenome by Next Generation Sequencing

The epigenome has been in the research spotlight, and for good reason. Not only has it been associated with the developmental stages of an organism, but epigenetic alterations lead to disorders and have been linked to many human diseases. So, the question stands: what exactly is an epigenome? What Is the Epigenome? Simply put, the…

DNA Extraction from FFPE Tissues for NextGen Sequencing
|

DNA Extraction from FFPE Tissues for NextGen Sequencing

Rapid genomic analysis offered by next generation sequencing (NGS) is ideal for personalized medicine approaches to clinical genetics, microbiological profiling, and diagnostic oncology. Many standard clinical samples are preserved as formalin-fixed, paraffin-embedded (FFPE) tissues, which presents obstacles for use in NGS analysis. FFPE tissue preservation has the benefit of keeping samples intact for histological examination…

nanopore sequencing

An Introduction to Nanopore Sequencing

DNA sequencing is the most powerful method to reveal genetic variations at the molecular level, leading to a better understanding of our body in physiological settings, and pathological conditions. It is the beginning of the long road towards better diagnostics and personalized medicine. Even though there have been great advances in DNA sequencing technologies there…

DNA from FFPE

The Key to Unlocking DNA from FFPE Tissues

Formalin fixed paraffin embedded (FFPE) tissues are valuable samples that typically come from human specimens collected for examination of the histology of biopsies for the detection of cancer. But each sample contains much more information just waiting to be unlocked. Despite the tiny sample size, DNA can be extracted from the tissue sections and used…

real-time sequencing

Single Molecule Real-Time Sequencing

Recently, I have witnessed the uprising of various next generation sequencing (NGS) platforms and it’s quite interesting because each platform uses a different method. Previously, I’ve written about the exciting possibility of nanopore sequencing—a new sequencing technology based on the “signature” electrical currents generated as a single strand of DNA passes through the nanopore. The…

Kiss your samples goodbye: Outsourcing your Next-Gen experiment

Kiss your samples goodbye: Outsourcing your Next-Gen experiment

Genomic Science has come a long way since the early days of Sanger sequencing in the 1970’s. Today, there are jazzy new sequencing technologies that include fragment analysis, epigenetic sequencing, RNA/transcriptome sequencing and Next Generation Sequencing (NGS). Increasingly these technologies are becoming more accessible, but they still require highly specialized (read: expensive) equipment. Unless your…

Get Your Single Nucleotide Polymorphisms Straight From the Oven!

Get Your Single Nucleotide Polymorphisms Straight From the Oven!

While it is true that there are some useful websites like SNPedia, or NCBI that can help you find rs codes for genetic variants, sometimes you need that info coming straight from the oven – particularly when you want to look at atypic SNPs or substitutions that have not been validated. So, in this post I…

|

Decoding the Genome: Applications of DNA Sequencing

The age of sequencing is undoubtedly upon us. From improving cancer diagnostics to pinning down elephant poaching hotspots, DNA sequencing is revolutionizing the world around us from the ground up. The latest video from Thermo Fisher Scientific’s “Behind the Bench” blog, 10 moments in DNA sequencing gives fascinating insights into the amazing advances being made…

|

Why DNA Size Selection Matters in NGS Pipelines

Of all the sample prep steps necessary for next generation sequencing, DNA size selection may have the greatest impact on quality of results. After all, ineffective sizing can waste sequencing capacity on low molecular weight material such as adapter-dimers or primer-dimers, while imprecise sizing can prevent bioinformaticians from producing accurate assemblies. High-quality size selection can…

Free Resources for Teaching Yourself to Analyze Next Gen Sequencing Data

If you’re new to next gen sequencing, figuring out what to do with your results can be a daunting process. Luckily, you’re not alone—plenty of people have been in your shoes, and there is tons of information about data analysis out there. Here are some free resources you can use to get up to speed…

GeneDig: An Easy-to-use Genome Browser for Bioscientists

GeneDig: An Easy-to-use Genome Browser for Bioscientists

The recent advancement of next generation sequencing technology and the development of novel gene editing tools, such as CRISPR-Cas9, have revolutionized research in genetics. In this golden era of molecular biology, knowing how to dig and navigate through all the enormous sequence information is an essential skill for most molecular biologists. However, to obtain facile…

Choosing a Scripting Language for Next Generation Sequencing: Python, Perl, and More

Choosing a Scripting Language for Next Generation Sequencing: Python, Perl, and More

Large amounts of data? Check. Repetitive tasks? Check. If you work with next gen sequencing data, you have probably already realized it’s a good idea to learn a scripting language. But learning a programming language is a major endeavour, and with lots of languages available how do you decide which one to study? And once…