Quantcast

Genomics and Epigenetics

NGS-Based HLA Typing Delivers More Comprehensive Information

Used for matching organ transplants to donors and other applications, human leukocyte antigen (HLA) typing is rapidly shifting from older methods to NGS technologies. This is a major step forward, as more complete views of the highly polymorphic HLA genes provide a deeper understanding of how a person’s natural genetic variation might affect transplant matches…

Read More

How to Test the Efficiency of your sgRNA

To successfully edit your genome of interest, one critical step is to test the sgRNA you have designed. Fortunately there are programs that have been developed such as CRISPRscan for zebrafish, SSC, Sequence Scan for CRISPR, or WU-CRISPR that you can use to predict the efficiency and the suitability of the sgRNA. However, the prediction…

Read More

Meeting the BioPython

The Biopython Project is an amazing initiative that helps scientists use Python for bioinformatics – and it’s exceptionally easy to learn! You can access online services, parse (read) different file types, analyze, and do a bunch of fun stuff with your data with Biopython. The people behind the project have put in a lot of…

Read More

Probability Theory and Molecular Barcodes

In biology, a molecular barcode is a characteristic DNA sequence used to distinguish and gather together similar items. Such a simple but powerful concept is useful in various applications. As an example, the Barcoding of Life project aims to identify specimens through the sequencing of standard gene regions, and use these as barcodes. On the other…

Read More

A Primer on Checking the Methylation State of the Genome

We all know that genes encode proteins that make up a living cell. However, the level and coordination of gene expression is really the key to the success of a living cell. One way eukaryotic cells (that’s us!) control protein expression is through addition of a methyl or hydroxymethyl group on the cytosine nucleotide. This…

Read More

Show Disparity in Gene Expression with a Heat Map

Have RNA-seq or microarray data? What possible tools can help you find your genes of interest? Is there any pattern in your expression data? I know you are totally at sea but heat maps are now commonly used to help. A heat map is a well-received approach to illustrate gene expression data.  It is an…

Read More

Phylogenetic Tree Construction Made Easy with Blast & Mega

Your DNA sequence can be put to good use fairly easily with Blast and Mega software. These programs can help in phylogenetic tree construction. You can ask questions like what is the evolutionary relationship between a set of sequences from different species? Or how have certain microbial strains arisen? Blast As any bioscientist probably knows,…

Read More

How to Generate High-Quality SNPs Data Sets from NGS

SNPs or single nucleotide polymorphisms are on many scientist’s wish list in experimental studies of genomic DNA sequences. Methods to detect SNPs have evolved. Now with the availability of high throughput sequencing methods, also known as next generation sequencing (NGS), SNPs can be identified in the large amounts of DNA sequence that is generated. There…

Read More

Investigating an Expression Quantitative Trait Locus (eQTL)

Thousands upon thousands of genetic variants are now associated with every disease and trait you can possibly think of. Such traits range from cancers to blood pressure, intelligence, height, weight… and many more! This is largely because of the advent of genome-wide association studies (GWAS). However, the vast majority of genetic loci associated with these traits are…

Read More

Introduction to Linux for High-Throughput Sequencing Analysis

So, you’ve spent time planning your high-throughput sequencing experiment. You’ve chosen how many replicates to use, deliberated about sequencing depth, and kept everything RNase-free. Now you have many gigabytes of data available. What’s next? While the first step of RNA-Seq analysis is aligning your sequencing reads to a reference genome, first you need to get…

Read More

How to Follow up on a GWAS (Genome-Wide Association Study)

So, the genome-wide association study (GWAS) data for your disease of interest was published, and it has thrown up some very interesting associations. However, at this stage, bear in mind that this is only an association. Your project is to provide the link between the GWAS single nucleotide polymorphisms (SNP) and pathological changes. Where do…

Read More

How Does Automated Electrophoresis Perform DNA Size Selection?

Anytime lab processes get automated by a sophisticated scientific instrument, there can be a “black box” effect, leading users to wonder what’s going on in there. For DNA electrophoresis, it’s no different. It’s easy to see what’s happening in a manual gel, but the automated gel-based DNA size selection platforms can be more mysterious. Automated…

Read More

An Introduction to Shotgun Sequencing: Fire in the Hole

In the midst of all the cool new sequencing techniques and technologies out there today, you may have overlooked the tried and true method of Shotgun Sequencing. What is Shotgun Sequencing Anyway? Shotgun sequencing gets its name from the concept that a large sequence is essentially broken up in to many, many smaller pieces, similar…

Read More

How to Choose The Appropriate Genomic NGS Data Simulator

Let’s say that you’ve just finished gathering your NGS reads and you’re going to simulate the introduction of random mutations at specific rates into the reads. Before you move on to the next step, you need to determine which NGS data simulator will get the job done. With the ever-increasing advancement of NGS in the…

Read More

P19 to the Rescue: How to Increase Protein Expression in Agroinfiltration

Plants are just not green gods—they can be more. You can cost-effectively express your recombinant complex proteins in a plant system. More interestingly, plants are ideal systems for producing functional monoclonal antibodies, enzymes, and vaccine components! They can also be used for protein localization studies. To save time, you can transiently express your protein using…

Read More

DNA Sizing Tutorial: When to Use Manual Gels, Beads, and More

There are several methods for size-selecting DNA fragments prior to sequencing. How do you choose which is best? Here’s a look at various options, plus considerations to help you determine when to use each one. Manual Gels Virtually every student in a biology lab knows how to prepare and cut a manual gel—but their ubiquity…

Read More

The Ins & Outs of Illumina Sequencing

The future of personalized medicine depends on affordable DNA sequencing. In the race for the $1,000 genome, several sequencer manufacturers are working on making equipment that can sequence DNA and RNA faster and more accurately. But so far, only one company – San Diego, California-based Illumina – has US FDA regulatory approval to use its…

Read More