Sage Science develops sample prep technologies for life science research. We focus on electrophoretic approaches that improve and automate high-value steps in Next Gen sequencing workflows.
Sage sells the Pippin™ line of DNA size selection instruments, which are widely used for DNA, RNA, and ChIP-seq library construction for short-read sequencing. Our systems are also used for preparing high molecular weight DNA for 3rd generation, long-range genomics platforms.
Our products are manufactured at our headquarters in Beverly, Massachusetts, USA.
Anytime lab processes get automated by a sophisticated scientific instrument, there can be a “black box” effect, leading users to wonder what’s going on in there. For DNA electrophoresis, it’s no different. It’s easy to see what’s happening in a manual gel, but the automated gel-based DNA size selection platforms can be more mysterious.
Automated DNA size selection systems rely on a processing instrument plus precast gel cassettes into which scientists load their samples. While the platforms vary a bit by manufacturer, we’ll describe the inner workings of the Pippin systems as an example.
The DNA Gel Cassettes
The gel cassettes are where the important work happens: moving the sample and separating out a specific fraction containing DNA fragments that match a user-defined size range (entered into the software that controls the system). These cassettes typically contain physically discrete lanes that allow you to run several samples without any risk of cross-contamination—a significant improvement over manual gels. They also include markers to help the instrument determine DNA fragment size, and those markers may be run in a separate lane or within the sample lane (ahead of the target DNA to prevent contamination).
Electrophoresis and Capturing the DNA Fractions
The instrument powers the gel and moves the DNA, but its main job is to activate certain mechanisms in the cassette to capture the correct fraction of sample. Cassette lanes end in a branched configuration, with unwanted DNA shunted off to one side and the target DNA directed to an elution well on the other side. The separation is managed by three electrodes. As the DNA moves along the gel, the electrodes move anything to the unwanted branch until the desired size range is reached. At that point, the active electrode is switched, diverting the target DNA to the elution well. Once the end of the desired size range has passed, the active electrode is switched again, and the remaining sample is moved to the waste channel.
Applications of Automated, Gel-Based DNA Size Selection Platforms
With this approach, researchers can collect a targeted size range, or conduct broader sweeps to keep everything larger than a certain threshold (useful for long-read sequencing or optical mapping), or all fragments smaller than a certain size (for samples like cell-free DNA). Systems that incorporate pulsed-field power can handle much larger DNA fragments—into the tens of kilobases—while simpler systems are best for smaller fragments.
Next Generation DNA Sequencing (NGS) is a revolutionary new technology that provides biologists and medical scientists with the ability to collect massive amounts of DNA sequence data both rapidly and cheaply. This technology is having a huge impact on many aspects of biology and medicine because it can be applied in so many different ways….
RNA sequencing (Wang 2009) is rapidly replacing gene expression microarrays in many labs. RNA-seq lets you quantify, discover and profile RNAs. For this technique, mRNA (and other RNAs) are first converted to cDNA. The cDNA is then used as the input for a next-generation sequencing library preparation. In this article, I’ll give a brief…
For those of you who prepare your own DNA libraries, this article will cover the most critical aspects of library preparation to ensure a successful sequencing run. Previous Bite Size Bio articles have covered the basics of how 454 sequencing works, so give those a quick review if you are unfamiliar with the process. This video is also highly…
The “sequencing-by-synthesis” technology now used by Illumina was originally developed by Shankar Balasubramanian and David Klenerman at the University of Cambridge. They founded the company Solexa in 1998 to commercialize their sequencing method. Illumina went on to purchase Solexa in 2007 and has built upon, and rapidly improved the original technology. Millions of reactions and…
In both the lab and field, it is important to know what species we are working with. While morphological data has always been a tried and true method of identifying species, DNA barcoding allows us to identify species when we don’t have that option (e.g. if we don’t have enough of a specimen to identify…
10 Things Every Molecular Biologist Should Know
The eBook with top tips from our Researcher community.