The Irish Potato Famine: NGS Unearths The Fungus Responsible For Over 1 Million Deaths

The Irish Famine (or ‘Great Potato Famine’ if you live outside the Emerald Isle) killed one million people and forced another million to leave the country between 1845 and 1852. It was caused by a blight on the country’s main food stock- the Irish ‘Lumper’ potato. Now, researchers have identified the genome of the blight…

Haematoxylin And Eosin 101: Part One – Method And Tips

Haematoxylin And Eosin 101: Part One – Method And Tips

Haematoxylin and Eosin staining is the most common staining in the modern (and old!) histology lab. This staining technique gives an overview of the structure of the tissue and can be used in pathological diagnosis. This article follows on from Nicola’s introduction, but we’ll take an in-depth look at the stains, chemistry and method to…

Conrad Waddington and his epigenetic landscape

Conrad Waddington and his epigenetic landscape

I was first introduced to Conrad Waddington’s epigenetic landscape when reading ‘The epigenetic revolution’, a fantastic introduction to epigenetics, and in my opinion, a must read for anyone who is looking for an entertaining and enjoyable introduction to this fascinating field. In his model, Waddington likens the process of cellular differentiation to a marble, which…

Focus on Isoelectric Focusing

Focus on Isoelectric Focusing

Isoelectric focusing electrophoresis (IEF) of proteins is nowhere near as popular as its cousin – sodium dodecyl sulphate-polyacrylamide gel electrophoresis aka SDS-PAGE. While in both methods the proteins are denatured, IEF is a gel-based electrophoretic separation of proteins using difference in their overall charges. The sodium dodecyl sulphate – SDS part of the usual gel…

An image of lab furniture to depict how not to wreck your autoclave.

How to Identify Protein Motifs from Protein Sequences

Wouldn’t it be great to put your nucleotide sequence into a program and get back a 3D-structure of your protein and a full description of its functions? In theory, because the protein 3D-structure is determined by the aminoacid sequence, given the right algorithm and a powerful enough computer, this should be simple.  In practice, because…

An image of lab furniture to depict how not to wreck your autoclave.

Cell and Tissue Fixation 101- Top Tips For Protocol Optimization

You just can’t put raw tissue or cell samples on your slides and expect good histology results! Instead you must preserve or ‘fix’ your samples. Fixing ensures that your cell structures stay intact and that your antigens are immobilized. Ideally, fixation would also still permit unfettered access of your antibodies to your antigens. However, as…

How to detect long non-coding RNA (lncRNA)
|

How to detect long non-coding RNA (lncRNA)

According to the central dogma of molecular biology, DNA is transcribed into RNA, that is translated to proteins. Inconveniently, the vast majority of the genome contains sequences that do not actually code for proteins. So, this non-coding RNA (ncRNA) was dismissed as non-functional junk, letting researchers tick the box on their to-do lists and head off…

Mycoplasma: The Hidden Anarchist of Cell Culture

It is the black death of cell culture. Scientists don’t dare utter its name and many a graduate student has fallen victim to its indiscriminate menace. These stealthy anarchists infiltrate quietly but deliberately until their numbers swell and then they attack in strength, overwhelming their victims before they can put up a fight! What is…

Counting On Your Results – Tips And Technologies For Colony/Plaque Counting

Counting On Your Results – Tips And Technologies For Colony/Plaque Counting

Have you ever emerged from the lab, bleary-eyed, blinking dazedly at the sun after spending hours hunched over a lab bench counting endless bacterial colonies or viral plaques? A necessary evil… I consider colony/plaque counting one of the necessary evils of working with microorganisms.  Necessary because many experiments have an endpoint that requires determining the…

If We Are 3-D, Should We Grow Cells In The Same Dimensions? Microscopic Analysis In 3-D.

If We Are 3-D, Should We Grow Cells In The Same Dimensions? Microscopic Analysis In 3-D.

“Do we use a monolayer or 3-D cell culture for our experiments?” A simple, yet puzzling question asked by my group leader while I was working on a drug development project at the University of Abertay Dundee. How do you answer such a question? Just read on to find out! Monolayer vs spheroid One of…

Getting the most out of your human DNA methylation studies

Getting the most out of your human DNA methylation studies

The field of epigenetics is exploding and given the strong links between epigenetic state and disease, the need to study markers like DNA methylation in humans is very relevant. This article outlines some of the main factors you should be taking into account in your study of DNA methylation in human tissues. Here goes: Biological…

What To Do When Whole Genome Sequencing Yields Unexpected Results: Is There A One-Size-Fits-All Answer?

Whole genome sequencing (WGS) is becoming increasingly common. Doctors now routinely order it for patients with puzzling diseases. The NHS (National Health Service in the UK) has declared that it will sequence 100,000 genomes over the next few years. Increase WGS…increase ethical questions The direct-to-consumer company 23andme has been experimenting with whole exome sequencing (WES), and another company, DNA…

Breaking Up is (Not That) Hard to Do: Sonication for Cell Lysis

Breaking Up is (Not That) Hard to Do: Sonication for Cell Lysis

To answer some of the more interesting research questions, you often need to get a good look at what’s going on inside the cell. Whether you’re running a Western blot or measuring enzyme activity, many assays require access to the materials (e.g. proteins, DNA, subcellular fragments) contained within the cell walls. There are several ways…

What is Sterile? Find Your Way around a Sterile Tissue Culture Hood

You’ve been told that maintaining a sterile environment in a tissue culture hood is vital to preventing contamination of cell cultures. But what exactly is meant by sterile? The definition of sterile is ‘completely clean, sanitized, and free of all forms of life’. Obviously you still want your cells and/or any other organisms you are…

I’m Sticking With You: Four Coatings To Help Cells Stick To Microscopy Slides

I’m Sticking With You: Four Coatings To Help Cells Stick To Microscopy Slides

Have you ever isolated a great little population of cells after days or months of trying, got truly excited about doing some immunofluorescence with them only to find out (at the very end) that all your cells washed away?! If this has happened to you, then look no further; we will introduce you to some…

Galaxy: A Free NGS Workflow Management System

Most ‘wet lab’ biologists do not have much computer programming experience, which can make downstream analysis of next generation sequencing results a bit daunting. After the sequencing platform spits out your data, what do you do with it? That’s where Galaxy comes in. What is Galaxy? Galaxy is a bioinformatics workflow management system, created by collaboration…

Understand EC numbers in 5 minutes Part 2: History of the EC system

Understand EC numbers in 5 minutes Part 2: History of the EC system

In the previous article on EC numbers, I explained how the Enzyme Commission names enzymes, and why it is so important. In this article I’d like to take you on a brief journey through the history of the Enzyme Commission. Like many histories in science (e.g. this!), it is fascinating and gives a useful perspective…

Shearing DNA For Next Generation Sequencing: Which Method Should I Choose?

Next-generation sequencing (NGS) really has taken the world by storm! In NGS, millions of short ‘read’s are sequenced in a short space of time, leaving you with vast amounts of data to analyze! For all NGS platforms, the input sample (i.e. your cell free DNA) must be cleaved into short sections or fragments prior to…

An image of colors to depict care for your pH meter.

A Semi-intelligible Explanation Of Structured Illumination Microscopy (SIM)

If you found our previous section on super resolution interesting, you may be curious for a more detailed explanation behind some of the techniques. Introduction to this counterintuitive method Of the super-resolution microscopy techniques, structured illumination microscopy (SIM) is arguably the most counterintuitive to grasp. Of course, that’s what makes it so much fun! To understand how…

Solid Phase Reversible Immobilization: How To Get A Bead On The Clean-up Of Your NGS Libraries

“Any sufficiently advanced technology is indistinguishable from magic.” – Arthur C. Clarke In the fast-moving field of next generation sequencing, standard practices are evolving rapidly. Today, more and more labs are using Solid Phase Reversible Immobilization (SPRI) beads instead of gel purification in the preparation of libraries for sequencing. A crucial step, not for the…

Cell lysis methods

Cell lysis 101: 5 types of cell walls you need to understand

Did you ever encounter resistance from a mammalian cell line when trying to extract the contents? Probably not, because destroying cell membranes is easy. Cell walls, however, are a different story. They are rigid, protective layers that can be so strong that the organism gives up movement in favor of protection! Cell walls exist in…

How To Troubleshoot Your DNA Libraries For 454 Next Generation Sequencing- An Essential Guide.

For those of you who prepare your own DNA libraries, this article will cover the most critical aspects of library preparation to ensure a successful sequencing run. Previous Bite Size Bio articles have covered the basics of how 454 sequencing works, so give those a quick review if you are unfamiliar with the process. This video is also highly…

Crush Like an Elephant, Soak Like the Rain: Old-School DNA Gel Extraction

In my previous article on DNA gel extraction, I explained how most commercially available DNA gel extraction kits work. However, there was a time before our society was blessed with these convenient marvels of technology and scientists had to summon the gods of “Crush and Soak”. This method has been proven for millennia, as people…

Why Is It Important To Run Your NGS Gels Consistently?

Size Selection via Gel Electrophoresis Whether you are using NGS for whole genome sequencing, SNP variant analysis, HLA typing, HLA matching, or even transcriptome or miRNA analysis by RNA-seq, size selection is an extremely important consideration for optimum results. Precise size selection can increase sequencing efficiency, save money and improve genome assemblies, as well as…