Few technical breakthroughs have changed the face of their field like the Polymerase Chain Reaction (PCR). Gene cloning, sequencing of complex genomes, DNA fingerprinting and DNA-based diagnostics are just some of the techniques that were either inefficient, crude or plain impossible before PCR. The technique has revolutionized biological research and biotechnology to such an extent that it can be considered as one of the major reasons for the boom the field has experienced over the last 20 years or so.
Kary Mullis is generally credited with inventing PCR in 1983 while working for Cetus Corporation in Emeryville, California. Mullis’ role at Cetus was to synthesise oligonucleotides for groups working on, amongst other things, methods to detect point mutations in human genes. Mullis was hatching an idea to detect the point mutations using Sanger-type DNA sequencing, employing DNA polymerase in the presence of an oligonucleotide primer and ddNTPs. The problem was that sequencing a single copy gene within the expanses of the human genome was impossible; the primer would bind in too many places. What he needed was a way to increase the concentration of the specific gene of interest.
While driving his Honda Civic on Highway 128 from San Francisco to Mendocino, Mullis made an intellectual leap. He reasoned that by using two opposed primers, one complementary to the upper strand and the other to the lower, then performing multiple cycles of denaturation, annealing and polymerization he could exponentially amplify the piece of DNA between the primers.
The idea of PCR was born, but the technique was still very much in it’s infancy. The E.coli DNA polymerase used in the early days was destroyed during the denaturation step so had to be replenished after every cycle. Cetus workers quickly developed the first thermal cycler named “Mr Cycle”, which automatically added new polymerase after each heating step.
In 1985, Mullis came up with the idea of using polymerase isolated from the extremophilic bacterium Thermophilus aquaticus. The polymerase, known as Taq polymerase, has optimal activity at 72°C and can withstand the 94°C required for denaturation of the DNA, meaning that many reaction cycles could be performed without being replenishing the enzyme. This breakthrough, together with advances in oligonucleotide synthesis made PCR both cost effective and convenient and it quickly entered mainstream research.
As researchers flocked to PCR, improvements to and variations on the process have, and continue to, come quickly and there are now hundreds of PCR-based applications in use in a variety of fields. Stephen Scharf, Mullis’ former colleague at Cetus, put it quite nicely:
One of PCR’s distinctive characteristics is unquestionably its extraordinary versatility. That versatility is more than its “applicability” to many different situations. PCR is a tool that has the power to create new situations for its use and those required to use it.
Perhaps the most influential of all techniques enabled by PCR is massive-scale genomic sequencing, which itself has transformed the biological and biotechnological research arena.
Mullis received the Nobel Prize for his ground-breaking invention in 1993. He also received a $10,000 bonus from his employers, Cetus, who later sold the patent rights to Hoffmann La-Roche for a cool $300,000,000. Seems to me there’s a lesson in there somewhere…
Further reading:
Researchers have relied on immunodetection techniques such as Western blotting, flow cytometry and Enzyme-Linked Immunosorbent Assay (ELISA) for years, but immuno-PCR is a relatively new method. By merging an ELISA with the Polymerase Chain Reaction (PCR), immuno-PCR provides extremely high levels of assay sensitivity. ELISA An ELISA is an assay in which a molecule is…
Before I get into today’s topic, please allow me to digress a bit and start with a few sentences that sum up the polymerase chain reaction (PCR); the grand-daddy of molecular biology. PCR, a method that is at the heart of modern day molecular biology discoveries, is a process that amplifies genetic material through our…
In the 30 odd years since its invention, the polymerase chain reaction (PCR) has become the bread and butter technique of molecular biologists. The secret to its indispensability lies in its simplicity and versatility. Numerous variants of the technique have been developed; one of these, real-time PCR, has become the method of choice for quantitative…
Quantitative PCR (qPCR) uses fluorescent dyes or probes to visualize the amplification of specific DNA sequences as it happens (i.e. in real time). The dyes or probes fluoresce when they bind to newly amplified DNA, and the amount of fluorescence emitted is proportional to the amount of DNA (or mRNA) present in the original sample. By detecting newly synthesized DNA…
There is a right way and a wrong way to set up a PCR laboratory. Because of PCR’s tremendous ability to amplify small quantities of DNA/RNA template, even the smallest of template contamination can become a huge problem in PCR. However, contamination does not have to be a problem in your laboratory. Read below to…
Who amongst us hasn’t had the need for oligonucleotides in an experiment? It is a cornerstone in many procedures and techniques. Depending on the goal, it can be very hard to design just the right oligo for your experiment. Oligos must have the right length; the right amount of C-G, T-A; they can’t form secondary…
10 Things Every Molecular Biologist Should Know
The eBook with top tips from our Researcher community.