Pros and Cons of CRISPR: Simple Tips for Weighing Up CRISPR for Genome Editing

Pros and Cons of CRISPR: Simple Tips for Weighing Up CRISPR for Genome Editing

While CRISPR offers vast applications in disease research and drug target identification, it’s not always the optimal choice for every scenario. Explore the main advantages and challenges of using CRISPR-Cas9 to determine if it’s the right fit for your project.

NGS Target Enrichment Strategies
|

NGS Target Enrichment Strategies

Next-generation sequencing (NGS) has ushered in a new era of understanding of both the inner workings and the function of the genome. NGS allows researchers to look at traits—including diseases—that are linked to differences or mutations in an individual’s genes. Since only about 1% of the human genome constitutes genes that code for proteins, several…

CRISPR-Inspired Method Targets Large, Repetitive DNA Elements
|

CRISPR-Inspired Method Targets Large, Repetitive DNA Elements

Target capture through PCR has been a mainstay in genomics for years, but scientists working on especially repetitive, poorly characterized, or rapidly evolving regions continue to struggle to fish out those stretches of DNA for further study. However, whole genome sequencing, the only other alternative for these regions, can force researchers to pay for much…

Why You Should Use Cas9 Ribonucleoprotein Transformation for CRISPR Genome Editing

Why You Should Use Cas9 Ribonucleoprotein Transformation for CRISPR Genome Editing

Imagine directly creating a mutation at (almost) any site in your target genome instead of screening thousands or millions of random mutants! The CRISPR/Cas9 system does just that. In its traditional form, this forward genetics approach takes 7 steps from start to mutated genome. However, there is a way to obtain your designer genome in…