Andrew Porterfield

A freelance life science writer for more than 20 years, I’ve worked for academic institutions, startup biotechs, major biopharmaceutical corporations and consultancies. I’ve also worked as a journalist for various organizations, and am currently the agriculture editor for the Genetic Literacy Project. I have a MS in biotechnology from the University of Maryland, and a BA in physical anthropology from the University of Pennsylvania. I live on California’s central coast.

Articles by Andrew Porterfield

The Ins & Outs of Illumina Sequencing

The Ins & Outs of Illumina Sequencing

The future of personalized medicine depends on affordable DNA sequencing. In the race for the $1,000 genome, several sequencer manufacturers are working on making equipment that can sequence DNA and RNA faster and more accurately. But so far, only one company – San Diego, California-based Illumina – has US FDA regulatory approval to use its…

How Thermophilic Bacteria Survive, Part II: DNA

How Thermophilic Bacteria Survive, Part II: DNA

In part I, I answered the question, “How do proteins in thermophiles survive under high temperatures?” In this part, I’ll look look at how nucleic acids survive -thrive, even- in conditions that are too hot for most of us, but ideal for a number of organisms, including the one that gave us Taq polymerase and…

All in the Chip: Ion Torrent Sequencers

All in the Chip: Ion Torrent Sequencers

Ion Torrent technology, when it was introduced in 2010, was one of several machines that promised to revolutionize genetics. These were benchtop machines that showed their prowess in quickly sequencing smaller exomes and other DNA samples (about 10-20 million bases per run, compared to Illumina HiSeq, which could read 250 billion bases in a run)….

Southern (blot) exposure remains a useful technique
| |

Southern (blot) exposure remains a useful technique

At a meeting recently, I asked two PhD molecular biologists about the last time they used a Southern blot. After nearly a minute of unrestrained laughter, they asked “Who on earth still does that?” “Maybe for a very, very specific use,” conjectured one of the scientists. When I asked the scientist who taught me the…

Catalyzing Through Confusion: Making (Some) Sense of Enzyme Units

Catalyzing Through Confusion: Making (Some) Sense of Enzyme Units

On the surface, it would seem easy enough to pick an enzyme (or an amount of enzyme) for an experiment. Just look at the concentration on the label, adjust accordingly, and you’re on your way. Alas, not with enzymes. The number of units used to measure enzymes is dizzying. However, it’s better now than it…

Ready to commercialise your research? Bioincubators are worth considering

Ready to commercialise your research? Bioincubators are worth considering

Finding adequate sources of funding is the primary challenge of just about any startup company, and biotechnology is no different. In fact, the regulatory, scientific and logistical requirements of making a new drug or device could easily be the most challenging of any industry. In addition, the global recession of 2007-2009 (combined with austerity measures…

Don’t Get Lost in RNA-seq Translation: RNA Sequencing the NGS Way

Don’t Get Lost in RNA-seq Translation: RNA Sequencing the NGS Way

DNA sequencing (PCR, Sanger or next-generation sequencing (NGS)) is a now familiar part of any molecular biology lab. But ‘RNA-seq’, the so-called “Cinderella of genetics”, is now becoming the belle of the ball, providing new insights into this most central molecule of the ‘central dogma’.  The many flavors of RNA Whilst genomic DNA is the…

Benchside Matchmaking—Finding the Right Buffer for Your Experiment

Benchside Matchmaking—Finding the Right Buffer for Your Experiment

Buffers are often taken for granted, but they can make or break an experiment.  In previous posts, we’ve talked about the wide ranges of buffers available for biological research and the characteristics of a “Good” buffer. Organic buffers are not inert! They can interact with your experimental molecule, or change pH due to changes in…

What Makes a “Good” Laboratory Buffer?

Just about any molecular biology experiment will involve the action of enzymes or other active proteins. And when enzymes are involved, the pH of your experimental environment is going to change. This is because most enzymatic reactions involve the loss or gain of hydrogen ions (protons), which modifies the pH of the environment. Biological systems…

The Irish Potato Famine: NGS Unearths The Fungus Responsible For Over 1 Million Deaths

The Irish Famine (or ‘Great Potato Famine’ if you live outside the Emerald Isle) killed one million people and forced another million to leave the country between 1845 and 1852. It was caused by a blight on the country’s main food stock- the Irish ‘Lumper’ potato. Now, researchers have identified the genome of the blight…

Do Your Homework to Find Good Reference Genes

Do Your Homework to Find Good Reference Genes

Comparing and measuring gene expression is certainly an integral part of research—gene expression patterns continue to show us how different cell networks are regulated, and point to new biological pathways and possible treatments for disease. But one crucial part of gene expression lies in making sure that differences in gene expression are due to gene…

Who Found the First Plasmid?

Plasmids—the loops of DNA in bacteria that form the original foundation of biotechnology—were being discovered constantly in the 1940s and 1950s. The only problem was, they were called everything but. Series of scientists found bacteriophages and other strange loops of somatic DNA, and gave them a series of names, including: pangenes, bioblasts, plasmagenes, plastogenes, choncriogenes,…

How the Ion Torrent Sequencer works

Just before Life Technologies purchased the start-up company Ion Torrent, the fledgling company was dealing with a torrent of another kind—worldwide media interest in its new sequencing technology, which promised to bring the price of next-generation, massively parallel sequencing down to $1,000 per run. Since that dramatic announcement in the summer of 2011, Life Technologies…

How Pure is Your Cell Culture Broth? Comparing Mycoplasma Detection Kits

How Pure is Your Cell Culture Broth? Comparing Mycoplasma Detection Kits

Mycoplasmas are the most difficult-to-detect organisms in your eukaryotic cell culture. And they can be the most dangerous; they can disrupt cell growth and differentiation and even apoptotic patterns without you even knowing what’s going on until it’s too late. Traditional cell culture methods can take up to a month to yield results, which means…

The Invisible Horde: Attacking Mycoplasma Infections

Mycoplasma infections are very, very bad news; these special prokaryotes can rapidly spread through your cell culture and inhibit cell proliferation, induce apoptosis, cytokines and radicals, and otherwise transform your cells. Worst of all, since contamination is not easy to spot, you may not realize your culture is contaminated until it’s too late. The 100…

The Secrets of Thermophile Survival: Part I

The Secrets of Thermophile Survival: Part I

In response to my last article, The Taq behind PCR, one of our readers, Bonnie Barrilleaux, asked whether DNA could naturally survive at temperatures that would denature it. It also begged the question; how do proteins stay intact and functioning at these high (55°C and up) temperatures? It turns out, cells do a lot of…