Chemical chaperones are necessary in protein experiments. From buffers to storage solutions, chemical chaperones silently make proteins happy and soluble. Read this article to appreciate the love that chemical chaperones bathe on your proteins and learn when to use them!
A chemical chaperone is a molecule that promotes the favorable interaction of protein with water in a nonspecific manner.
As we all remember from Protein Chemistry 101 a major driving force in protein folding and solubility is the hydrophobic effect. If a protein isn’t folded correctly, hydrophobic regions of the protein are exposed causing aggregation, degradation and insolubility. Once your proteins-of-interest are extracted away from the natural folding systems of the cell (which centers on protein chaperones), they become susceptible to unfolding. To overcome this problem chemical chaperones are often added to extraction and storage buffers.
Chemical chaperones are naturally occurring molecules that are often upregulated in vivo during times of stress. They are amphipathic in nature: that is they contain both hydrophilic and hydrophobic properties. This allows them bind both to the hydrophobic sites on your protein and simultaneously hydrogen bond with the surrounding water of your buffer. This promotes protein solubility, and prevents aggregation and heat-induced denaturation.
Commonly used chemical chaperones include:
Glycerol.
Trehalose.
Mannitol.
Maltose.
Sucrose.
Glycine betaine.
Phenylbutyric acid.
Trimethylamine oxide.
DMSO (dimethyl sulfoxide).
The most often used chemical chaperone is glycerol. Glycerol is often added to commercially purchased enzymes and proteins that are stored below freezing. Glycerol prevents freeze/thaw cycles by lowering the freezing point of the solution. However, glycerol is not just added to prevent freezing – lots of things could do that (such as ethanol) – glycerol is added because it also promotes protein stability by directly permitting energetically favorable interactions of the protein with water.
Figure 1. Structure of glycerol, one of the most commonly used chemical chaperones.
Another favorite atypical “chemical” chaperone choice is the protein BSA (bovine serum albumin). BSA is often added to protein preparations and enzymatic reactions, such as antibodies and restriction enzyme digests. I used to think excess BSA was added to samples just to prevent proteins-of-interest from sticking to the sides of the tube. But apparently BSA may be doing more than that! BSA has a propensity to non-specifically promote protein folding and reduce protein aggregation.
When You Should Use Chemical Chaperones
You should consider giving a chemical chaperone a whirl if things just aren’t working out with your…
Protein purifications.
Protein/protein interaction studies.
In vitro enzymatic reactions (restriction enzyme digests, phosphorylations, etc).
And of course you may need to use a chemical chaperone as a control if you are studying protein folding and/or chaperone functions.
When You Should NOT Use Chemical Chaperones
So, as with anything, there is a downside to using chemical chaperone. Some argue that the use of chemical chaperones alters native protein structure, thereby compromising the biologic relevancy of your experiment. So bear this in mind if you do decide to use a chemical chaperone.
Other (non-chemical) chaperones
In addition to chemical chaperones, there are several other methods and manipulations to promote protein folding. These include:
pharmacological chaperones, which are designed to promote the folding of a specific protein or to lock them into a stable form
upregulation of endogenous folding systems using chemicals or heat, which in turn promote global protein folding.
What kind of chemical chaperone you choose is up to you. The best chaperones are usually found experimentally, so I encourage you to experiment with them. A chemical chaperone just might be the difference between a failed experiment and a successful one.
Good luck, and keep your proteins happy anyway you can!
Monoclonal antibodies are extensively used in research laboratories, diagnostic products and immunotherapy and have multiple advantages over polyclonal antibodies. They exhibit enhanced specificity to single epitopes, have little or no variability, and are easy to modify and customize as required. The History of Monoclonal Antibodies In 1984, Georges Köhler, César Milstein, and Niels Jerne received…
In her article How to Get Perfect Protein Transfer in Western Blotting, Emily Crow recommends Coomassie staining your gel after transfer to the membrane to check the quality of the transfer. A good transfer should not leave behind proteins and PVDF membrane, stained by 0.1% Ponceau S in 5% phosphoric acid and destained with water…
2D gel electrophoresis (2DE) is a key technique for purifying individual proteins from complex samples based on their isoelectric points and molecular weights. Simple enough in theory, but as the plethora of protocols and articles shows, 2DE demands patience and meticulous optimization. But whether your samples are human sera or HUVEC lysates, 2DE uses these…
In-cell Westerns are a powerful technique that has enhanced how researchers analyze protein expression levels and signaling pathways within fixed cells. Learn about their primary advantages, applications, and some of the best tech and products to perform them.
Isoelectric focusing is a way of separating proteins and peptides based on their isoelectric point. Read all about this method and its applications right here.
If I piqued your interest in the first post about my new e-Book ‘The Bitesize Bio Guide to Protein Expression – a Bitesize Bio eBook’ check out this excerpt from the book explaining what an expression system is and how to choose the right one. What is an expression system anyway? There was a time…
10 Things Every Molecular Biologist Should Know
The eBook with top tips from our Researcher community.