DNA Extraction from FFPE Tissues for NextGen Sequencing
|

DNA Extraction from FFPE Tissues for NextGen Sequencing

Rapid genomic analysis offered by next generation sequencing (NGS) is ideal for personalized medicine approaches to clinical genetics, microbiological profiling, and diagnostic oncology. Many standard clinical samples are preserved as formalin-fixed, paraffin-embedded (FFPE) tissues, which presents obstacles for use in NGS analysis. FFPE tissue preservation has the benefit of keeping samples intact for histological examination…

How to Perform DNA Extraction from Dried Blood Spots Using Chelex Resin

Every bio- scientist who wants to analyze DNA knows that the process begins with the extraction of DNA from cells of interest. These cells could be RBCs, parasites, or bacteria to name a few. Furthermore, there are various DNA extraction methods1  to choose from depending on sample type, downstream analysis, and so forth. Many scientists…

How to Choose Your Method for DNA Extraction from Whole Blood

Over the last few decades, PCR, next-generation sequencing, and microarray technologies have taken blood-based research to a new level. Modern blood-based applications range from DNA fingerprinting, whole genome sequencing, blood banking to liquid biopsy, and many more. Regardless of the application, pure, intact, double-stranded stranded, and highly concentrated DNA extraction from whole blood is an…

Quick reference: Determining DNA Concentration & Purity

The most comprehensive way to evaluate DNA concentration and purity is to use both UV spectrophotometeric measurements and agarose gel eletrophoresis. This quick reference guide gives an overview of the information that can be derived from both. UV spectrophotometric measurement of DNA concentration and purity DNA itself, and most of the common contaminants found in…