Chemical-Based Methods
1) Lipofection
- Employs a liposome-based transfection reagent that is taken up by cells when mixed with the genetic material (e.g., plasmid, siRNA).
- Easy to use and doesn’t require many steps or specific expertise.
- Typically, you will need a transfection reagent and a compatible growth medium (usually low in serum and well buffered to keep your cells happy during the transfection process). Different vendors have their own formulated reagents, and some are even designed for specific cell lines so check to see if your cell line has its own optimized lipofection formula.
- Compatible with a range of cell types (e.g., HEK 293 and CHO cells).
2) DEAE-Dextran (Diethylaminoethyl-Dextran)
- This is a cationic polymer that binds-negatively charged DNA and proteins, forming a structure that can then be endocytosed by cells.
- Important optimization parameters include polymer concentration, the ratio of nucleic acids or protein to polymer, and duration of transfection.
- Is most effective for transfecting adherent cells, but can be used for some suspension cell lines.
3) Calcium Phosphate Co-Precipitation
- DNA is mixed with a concentrated calcium chloride solution which is then added to a buffer containing phosphate ions (e.g., HEPES), to form a calcium phosphate-DNA precipitate.
- This precipitate is then added to and taken up by your cells.
- This is the cheapest method of transfection and is widely used.
Non Chemical-Based Methods
1) Electroporation
- Cells experience short pulses of an electric field, essentially shocking them into taking up foreign genetic material. Electroporation is also suitable for transfecting proteins.
- A number of electroporation devices exist and no specific expertise is required for operation. Make sure to ask the supplier for a demo of any device to make sure it works for your specific cell line before you buy!
- Each electroporation apparatus applies an electric field to the cells, via the electroporator.
- The electroporator is set up to fit either a cuvette or a pipet tip, which contains an electrode to apply the voltage directly to the suspended cells.
- After the conditions are set and the cells are suspended in either the cuvette or the tip, you place the sample in the electroporation unit and click a button! Make sure that there are no bubbles present, as this may affect transfection efficiency.
- Add recovery media to cells immediately after electroporation for maximum transfection efficiency.
- Optimization of voltage, duration and number of pulses can increase the permeability of the foreign material, but you will need to carefully optimize these parameters for each cell line.
Bear in mind that not all cell types tolerate electroporation and it may cause some cell types to die.
2) Viral transduction
- This involves using viral vectors to transfer genetic material to primary mammalian cells, which are often difficult to transfect.
- May require considerable safety precautions (e.g. containment) due to the risk of viral transmission.
- You may need to use several vectors to reduce the risk of a recombination event.
- Requires packaging cell lines (e.g., HEK 293 T cells) to produce the viral particle that will carry your transfecting DNA.
Tips and Tricks for Successful Transfection
Transfection of mammalian cell lines is not trivial. Deciding which method works best for you depends on many factors such as:- Your lab budget
- Access to equipment (i.e., electroporation device)
- Your cell type – immortalized or primary cell lines
- Whether you want to stably or transiently transfect cells (Principles and Mechanisms of Mammalian Cell Transfection)
- How well your cells can take up control plasmids