Marketing
Join Us
Sign up for our feature-packed newsletter today to ensure you get the latest expert help and advice to level up your lab work.
Join Us
Sign up for our feature-packed newsletter today to ensure you get the latest expert help and advice to level up your lab work.
last updated: April 2, 2020
Andrew has been a freelance life science writer for more than 20 years. Worked for academic institutions, startup biotechs, major biopharmaceuticals. Agriculture editor, Genetic Literacy Project. He has an MS in Biotechnology from the University of Maryland, and a BA in Physical Anthropology from the University of Pennsylvania.
Share this article:
A revolution in 2005 The start of the NGS revolution was clearly marked in 2005 by the publication of the complete genome sequences of two bacterium (Mycoplasma genitalium and Streptococcus pneumonia) by 454 Life Sciences Corporation in one run of their Genome Sequencer with a 96% coverage at 99.96 % accuracy (Margulies et al. 2005)….
Maxam–Gilbert Sequencing. Slow and obsolete or niche but powerful? Discover how it works and learn about three modern applications.
While CRISPR offers vast applications in disease research and drug target identification, it’s not always the optimal choice for every scenario. Explore the main advantages and challenges of using CRISPR-Cas9 to determine if it’s the right fit for your project.
A commonly used technique in epigenetics is Chromatin Immunoprecipitation, or ChIP for short. This technique can show you whether a certain protein (e.g. transcription factor or histone modification) binds to DNA, when in its native conformation, namely chromatin. Insightful, but difficult This information can be very insightful, but difficult to obtain. Most protocols and suggestions…
Thirty-five years ago, Dr. Janet Davison Rowley sat at a microscope in her lab at the University of Chicago and made a remarkable discovery in cancer biology, that leukemia is caused by the translocation of a chromosome. In other words, it is a disease of the DNA. Today, thanks to next generation sequencing (NGS), we can zoom in…
It took scientists a little while to warm up to long-read sequencing, but now you couldn’t pry most of them away from their sequencers with a crowbar. Long reads — we’re talking 10,000 bases and more — provide a level of contiguity and completeness in genome assemblies that simply isn’t possible with short-read sequencers. They…
The eBook with top tips from our Researcher community.