I was browsing a certain website the other day when I came across a protocol that advised: “When agarose starts to cool, it undergoes what is known as polymerization”
Polymerising agarose? Someone is getting their gel matrices mixed up, and it’s not the first time I have heard this said, so it looks like some myth-busting is required.
So hunker down for a quick run down on the difference between polymerising and non-polymerising gel matrices.
Of the common gel matrices used in molecular biology, polyacrylamide, agar and agarose, polyacrylamide is the one that polymerises. I’ll deal with agarose and agar later.
Polyacrylamide gel polymerisation
Polyacrylamide, used mainly for SDS-PAGE, is a matrix formed from monomers of acrylamide and bis-acrylamide. It’s strengths are that is it chemically inert – so won’t interact with proteins as they pass through – and that it can easily and reproducibly be made with different pore sizes to produce gels with different separation properties.
The polymerisation reaction, shown in the diagram below, is a vinyl addition catalysed by free radicals. The reaction is initiated by TEMED, which induces free radical formation from ammonium persulphate (APS). The free radicals transfer electrons to the acrylamide/bisacrylamide monomers, radicalizing them and causing them to react with each other to form the polyacrylamide chain.
In the absence of bis-acrylamide, the acrylamide would polymerise into long strands, not a porous gel. But as the diagram shows, bis-acrylamide cross-links the acrylamide chains and this is what gives rise to the formation of the porous gel matrix. The amount of crosslinking, and therefore the pore size and consequent separation properties of the gel can be controlled by varying the ratio of acrylamide to bis-acrylamide.
For more information on polyacrylamide gel polymerisation see Biorad Bulletin 1156Agarose gel formation
So what about agarose? Well, agarose – the main component of the gelatinous agar that can be isolated from certain species of seaweed – is itself a polymer. But, polymerisation is not the mechanism for agarose gel formation.
Chemically, agarose is a polysaccharide, whose monomeric unit is a disaccharide of D-galactose and 3,6-anhydro-L-galactopyranose which is shown in the diagram below.
In aqueous solutions below 35°C these polymer strands are held together in a porous gel structure by non-covalent interactions like hydrogen bonds and electrostatic interactions. Heating the solution breaks these non-covalent interactions and separates the strands. Then as the solution cools, these non-covalent interactions are re-established and the gel forms.
So agarose (and agar) gels form by gellation through hydrogen bonding and electrostatic interactions, not through polymerisation
More 'DNA / RNA Manipulation and Analysis' articles
There are many cloning methods that do not require restriction enzymes or ligases. Read below to learn about how to achieve seamless cloning results via Topoisomerase cloning, SLIC, and Gibson. Method #1: Topoisomerase Technology Topoisomerase technology requires no special primers and no ligases – it is as easy as cloning comes. This technology is based…
What do DNA mini preps and protein immunoprecipitation experiments have in common? They start differently, but they end with the same, critical stage – elution. But what exactly is elution, and what is the point? The Terminology First, let’s start with some basic terminology: Elution – extracting one material from another by washing with a…
The polymerase chain reaction (PCR) is the backbone of many lab techniques. In short, it allows for the exponential amplification of a specific segment of DNA. Through the use of primers encoding restriction enzyme sites, these amplified fragments are used in downstream cloning procedures, usually leading to the insertion of one, maybe two, PCR fragments…
When heterologous gene expression goes wrong it can be a real headache. Here’s my checklist for the steps to take when you encounter problems with this dark art. 1. Check the construct by sequencing the expression cassette to make sure that everything is as you expect. A lack of expression could result from a stray…
The most comprehensive way to evaluate DNA concentration and purity is to use both UV spectrophotometeric measurements and agarose gel eletrophoresis. This quick reference guide gives an overview of the information that can be derived from both. UV spectrophotometric measurement of DNA concentration and purity DNA itself, and most of the common contaminants found in…
Some tissues are tricky to work with. This truth was lost on me in the early years of grad school because I worked with liver samples. If you’re extracting RNA from liver samples, you’re likely not losing sleep over your massive RNA yields. But for the folks doing RNA extractions with less willing donors, such…
10 Things Every Molecular Biologist Should Know
The eBook with top tips from our Researcher community.