Skip to content

Stereo (Dissecting) Microscopes 101


Think a stereo microscope might be helpful? But you don’t know how to use one? Lucky for you I wrote this primer on stereo microscopes to help you figure out when and how to use these handy microscopes.

Stereo microscope anatomy

Whether you need to solder electrodes or visualizing gross tissues, a stereo microscope can be extremely useful. So let’s take a look at some of the anatomy this useful ‘scope and how it compares to the more common compound microscope:

microscope full-crop     A – Eyepiece

     B – Auxiliary Objective Adjustment (Zoom Control)

     C – Focus Control

     D – Objective Lens





Eyepieces (A) on a stereo microscope can vary in their level of magnification, often from 1x to 10x. When looking at an objective through a stereo microscope you’ll notice a different ‘feel’. This is because unlike a compound microscope, stereo microscopes have two separate light paths transmitting the image under study to each eyepiece. This takes advantage of our binocular vision and allows you to perceive your object in three-dimensions and it gives you a feeling of depth to the object under study.

Similar to compound microscopes, the objective lens (D) on a stereo microscope can be quite powerful (up to 40x from what I’ve seen on the market). A major advantage to using a stereo microscope is that the working distance is very large. Often, you can raise or lower the objective lens several inches using the focus control (C), thereby allowing you to easily manipulate an object of interest without the obstruction of the objective lens. The trade-off for this working distance is decreased resolution as working distance and resolution are inversely related. To increase the magnification beyond the basic objective lens, stereo microscopes can also be equipped with additional, internal auxiliary objectives that can be adjusted using a zoom control (B) feature on this type of stereo microscope.

Shining light on (or through) your sample

Traditional stereomicroscopes conduct the image to the eyepiece through the use of reflected light as opposed to transmitted light used in a typical compound microscope. The use of reflected light is useful when the object of interest is too thick to be imaged or visualized with transmitted light. This reflective light source may be on the microscope itself or from external equipment, such as an LED light source. Some fancy stereo microscopes even offer the best of both worlds. These scopes can conduct light through the specimen-of-interest (transmitted light) AND if desired, use an additional reflective light source.

How to capture an image

Remember earlier how I mentioned that stereo microscopes can allow you to employ our binocular vision? Well, depending on the sophistication of the stereo microscope, trinocular vision may be available. This may sound like an exciting new mode of vision. But sadly, it is not. All this means is that some type of camera, whether it be a basic digital or an expensive CCD camera can be attached to photograph the specimen under study.


Thanks for reading!



Leave a Comment

You must be logged in to post a comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Scroll To Top
Share via
Copy link