Sage Science

Sage Science develops sample prep technologies for life science research. We focus on electrophoretic approaches that improve and automate high-value steps in Next Gen sequencing workflows. Sage sells the Pippin™ line of DNA size selection instruments, which are widely used for DNA, RNA, and ChIP-seq library construction for short-read sequencing. Our systems are also used for preparing high molecular weight DNA for 3rd generation, long-range genomics platforms. Our products are manufactured at our headquarters in Beverly, Massachusetts, USA.

Articles by Sage Science:

Size-Selection Is Essential for Cell-Free DNA Studies

Advances in using cell-free DNA (cfDNA) to glean clinically meaningful information for a patient have been stunning. For the most part, these research studies (or downstream diagnostic tests) isolate fetal DNA in the mother’s blood or tumor-derived DNA from the background of healthy DNA in the bloodstream. Typically known as liquid biopsies, these minimally invasive…

10 Feb 2017 Lab Statistics & Math&Sage Science

How Does Automated Electrophoresis Perform DNA Size Selection?

Anytime lab processes get automated by a sophisticated scientific instrument, there can be a “black box” effect, leading users to wonder what’s going on in there. For DNA electrophoresis, it’s no different. It’s easy to see what’s happening in a manual gel, but the automated gel-based DNA size selection platforms can be more mysterious. Automated…

15 Nov 2016 Genomics & Epigenetics&Sage Science

DNA Sizing Tutorial: When to Use Manual Gels, Beads, and More

There are several methods for size-selecting DNA fragments prior to sequencing. How do you choose which is best? Here’s a look at various options, plus considerations to help you determine when to use each one. Manual Gels Virtually every student in a biology lab knows how to prepare and cut a manual gel—but their ubiquity…

01 Sep 2016 Genomics & Epigenetics&Sage Science

For Better NGS Assemblies, Use More Precise DNA Size Selection

It may not be intuitive that a sample preparation step like DNA size selection would have a significant impact on downstream data analysis, but NGS users have proven that it does. Indeed, the precision of your size selection (or lack thereof) can make or break a genome assembly. Consider the alignment challenge for paired-end reads:…

28 Jul 2016 Genomics & Epigenetics&Sage Science

The Art of Size Selection for Small RNAs

Size selection is a critical step in NGS pipelines, but may be most challenging for studies of small RNAs. The concept behind size selection is simple: separate a sheared DNA or cDNA sample by fragment size, and then use the resulting sizes to remove unwanted fragments. This is a tried-and-true way to get rid of…

17 Mar 2016 Genomics & Epigenetics&Sage Science

For Long-Read Sequencers, Size Selection Is Key

It took scientists a little while to warm up to long-read sequencing, but now you couldn’t pry most of them away from their sequencers with a crowbar. Long reads — we’re talking 10,000 bases and more — provide a level of contiguity and completeness in genome assemblies that simply isn’t possible with short-read sequencers. They…

09 Feb 2016 Genomics & Epigenetics&Sage Science

Why DNA Size Selection Matters in NGS Pipelines

Of all the sample prep steps necessary for next generation sequencing, DNA size selection may have the greatest impact on quality of results. After all, ineffective sizing can waste sequencing capacity on low molecular weight material such as adapter-dimers or primer-dimers, while imprecise sizing can prevent bioinformaticians from producing accurate assemblies. High-quality size selection can…

15 Jan 2016 Genomics & Epigenetics&Sage Science